The Effect of Preprocessing to the Complexity of List Sphere Detector Algorithms
نویسندگان
چکیده
A list sphere detector (LSD) is an enhancement of a sphere detector (SD) that can be used to approximate the soft output MAP detector used in the detection of the multiple-input multiple-output (MIMO) signals. The LSD algorithm executes a tree search on the given lattice and returns a candidate list. The LSD algorithm complexity, i.e., the number of visited nodes in the search tree, can be decreased by applying proper ordering of the transmitted spatial streams in the detection. In this paper, we study the effect of two sophisticated preprocessing methods, the channel matrix column ordering based on Euclidean norm and the sorted QR decomposition (SQRD), to the performance and complexity of the LSD algorithms and compare them to the traditional QR decomposition (QRD). We show that the SQRD preprocessing is a simple way to decrease complexity of the LSD and it decreases the number of visited nodes approximately 20− 30% compared to the QRD which results in significant number of saved arithmetic operations in the LSD. We also show that the plain channel matrix column ordering is not feasible preprocessing method to be used with LSD in highly correlated channel realization.
منابع مشابه
Implementation aspects of list sphere decoder algorithms for MIMO-OFDM systems
A list sphere decoder (LSD) can be used to approximate the optimal maximum a posteriori (MAP) detector for the detection of multiple-input multiple-output (MIMO) signals. In this paper, we consider two LSD algorithms with different search methods and study some algorithm design choices which relate to the performance and computational complexity of the algorithm. We show that by limiting the dy...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملOn the Optimality of MMSE-GDFE Pre-Processed Sphere Decoding
In this work, we consider maximum likelihood (ML) sequence detection in MIMO linear channels corrupted by additive white Gaussian noise. While sphere decoding (SpD) algorithms have been developed to reduce the average complexity of ML detection, the average complexity of classical SpD can itself be impractical in low-SNR settings or when the channel is ill-conditioned. In response, sequential d...
متن کاملExtended ratio edge detector for despeckled SAR image evaluation
Synthetic aperture radar (SAR) images due to the usage of coherent imaging systems are affected by speckle. So lots of despeckling filters have been introduced up to now to suppress the speckle. Hence, objective and subjective evaluation of the denoised SAR images becomes a necessity. Thereby lots of objective evaluating estimators are introduced to evaluate the performance of despeckling filte...
متن کامل